
Performance Testing of a TINA Platform

Marc Born, Andreas Hofhann,
h a Schieferdecker, Theofanis Vassiliou-Gioles, Mario Winkler

GMD FOKUS Kaiserin-Augusta-Allee 3 1, D- 10589 Berlin
Tel. +49 30 3463 7385, Fax. +49 30 3463 8385

email: {born I a.hofhann I schieferdecker I vassiliou I winkler} @,fokus.amd.de

Abstract - The TINA architecture specifications are well-
known and available for many years. Experiences have been
made with prototypical implementations of the TINA
architecture or parts of it. These implementations have shown
the benefits of the generic concept of TINA for surrounding
distributed telecommunication services. Most of the
implementations are using new object-oriented implementation
languages like C++ or Java and communication architectures
like CORBA. However, up to now the question of the
performance and satiability of TINA conform implementations,
i.e. there eligibility for real applications with thousands of
simultaneously acting users still remains.

This paper reports performance test results made with the
TINA platform implementation at GMD FOKUS, which is
based on C++, CORBA and Windows NT. The tests concentrate
on the access session part of the service architecture (including
subscription).

The paper discusses basic concepts of a flexible performance
test architecture for distributed systems based on CORBA
technology. The concrete performance test results are given,
analysed and evaluated.

1. MOTIVATION
Due to the highly increasing complexity of new

telecommunication services and the need for more scalable
and manageable as well as flexible, run-time configurable
execution environments for telecommunications services
(telecommunication platforms) new technologies for such
platforms are needed. Current telecommunication platforms
are mostly based on intelligent networks (IN) technology and
do not meet the new requirements any more. In the last few
years a lot of research efforts have been made in the research
labs all over the world to find new solutions to fit the new
requirements of today’s telecommunication market. The next
generation of telecommunication platforms is based on
distributed object technology - a key enabling factor for
fiture telecommunication system~s. In order to define a
general fiamework for all kinds of telecommunication and
information retrieval services based on distributed object
technology most of the large telecommunication companies
in all over the world founded the Telecommunications
Information Networking Architecture Consortium (TINA-C).

In recent years in many labs telecommunication platforms
based on the principles of the TINA-architecture have been
developed. However, up to now only a few of them have left
the labs. One reason is that there is a lot of scepticism to
object technology and especially to distributed systems. Often
it is argued that distributed object-oriented systems in general

and especially TINA-based systems are less performant and
scalable than conventional systems. Hence, an evaluation of
real TINA implementations is needed to show that current
TINA systems are ready to come to practise.

This paper shows that telecommunication platforms based
on TINA technology are scalable and performant enough to
meet the requirements of today’s telecommunication market.
It presents a general approach to testing the performance,
robustness and scalability of distributed systems. The TINA
access session which is part of the TINA platform developed
by GMD FOKUS was the TINA implementation which has
been tested in our lab. To enable distributed performance
testing a flexible test architecture has been implemented
based on Common Object Request Broker Architecture
(CORBA) technology. This test architecture allows to start
and configure any number of TINA test clients
simultaneously on any network node and to collect their
results after the tests have been completed. By increasing the
number of simultaneously working test clients the
performance, scalability and robustness of the TINA access
session server can be tested.

It should be noted that distributed object technology also
allows that several TINA servers run simultaneously on
different network nodes in order to increase the performance
and to minimize the response time for the user. Performance
testing of simultaneously running TINA servers is a subject
to future testing and not covered in this paper.
A . TINA Platform Under Test

This section is to describe the TINA platform
implementation at GMD FOKUS which was the system
under test outlined in this paper. The platform was designed
according to the TTNA architecture and consists in principal
of access session and subscription components. They are
implemented in C++ and run under Windows NT 4.0. The
communication between the distributed components is done
by means of CORBA mechanisms which are provided by the
commercial product Visibroker 3.2. The following
subsections describe the structure of the implementation of
both components and their environment in more detail.
1. Access Session and Subscription

The access session component is of major concern in this
paper. It is forming one process running on Windows NT and
consists of implementations for the computational objects
defined in the TINA architecture like Initial Agent (IA) and

0-7803-5785-X/$10.00 0 1998 IEEE 273

mailto:fokus.amd.de

User Agent (UA). That means there is a decomposition of
these objects in several C++ class declarations and
definitions. Furthermore these computational objects are
supporting interfaces according to the Retailer Reference
Point (RET-RF') defined by TINA-C like i-Retailerlnitul and
i-RetailerNamedAccess as well as proprietary interfaces
which are used internally (see figure). In order to hlfil its
task the access session needs information fiom subscription.
Therefore another process is running on the same node
containing the subscription component. It contains
implementation for several computational objects whereas
one of them the Subscription Coordinator (SC) is of main
interest for the access session. It suppo~?s an interface which
provides all the necessary information to the access session.
Subscription itself retrieves these information fi-om an object-
oriented database realized with Versant.
2. Environment

In order to make some interface references fiom
subscription known to the access session and known to the
test component a C O M A name service has to be executed.
In the relevant test configuration the name service comii
with Visibroker for C++ 3.2 was used. It is running on ti
same node like the other components under test.

Fig. 1. Configuration of the TINA Platform under Test

The access session uses another component (UADB) to get
access to the already mentioned object-oriented database,
where all user information are stored. This component runs in
a separate process on the same node and is also implemented
in C++. Figure 1 shows the configuration of the platform.
As a precondition for the whole platform the Visibroker 3.2
Smart Agent has to run on the node as well as the Versant
demon to use the database which also runs on the same node.
This is not depicted in the figure.

11. TEST OBJECTIVES
Testing distributed applications encompasses two steps:

In a first step the hnctional aspects of the system
under test is verified, i.e. it is checked whether the
system behaves in the target environment like

expected and whether it is conform to reference

Once the conformance of the system under test is
checked, performance and robustness tests can be
performed to determine whether the system also
behaves correct under load.

The conformance tests for the TINA platform under test
have been made in the past and are not part of this paper.
These tests have shown that the TINA platform to be tested
conforms to the TINA retailer reference point. The general
approach for distributed conformance testing and an example
taken fiom the TINA access session can be found in [6]. This
paper concentrates on performance testing in the second step.
The goal is to check:

the performance and partially the robustness and
scalability of the TINA access session,
QoS issues like response time of the TINA access
session server to the user.

In essence, the performance test is an evaluation of the
responsiveness of the access session server of the TINA
platform and of its scalability. Therefore, parallel test
components are used to emulate the behaviour of clients
individually and to emulate the simultaneous access of
several clients to the access session server.

A number of such parallel test components (PTCs, for
short referred to as TC), which emulate the client behaviour,
will be triggered to run the test behaviour when the system
under test is up and running and the test configuration is set

points.
0

UP.
1.

2.

3.

4.

5 .

Figure 2 depicts the test behaviour as a Message
Sequence Chart (MSC) diagram in parallel to the
following description:
The test component (TC) resolves a name context at
the name service to retrieve the interface reference
(i-Retailerhitial interface) to the Initial Agent (IA).
This interface reference is used to call the
requestNamedAccess operation at that interhce. The
parameter userld has the value anonymous, the
password is an empty string. This operation request
causes the IA to initiate a database request to the
UADB object to get some properties for that user
(userDescription).
In the case that the userld is anonymous the IA
instantiates a new User Agent (UA), initializes the UA
with the user description and returns the interface
reference (iRetailerNamed4ccess interface) of the
UA to the TC. In its initialization phase the User
Agent resolves a name context at the name service to
retrieve the interface reference to the Subscription
Coordinator (SC).
The TC calls the operation setUserContext at the
i-RetailerNamedAccess interhce.
In order to retrieve the available services for that
anonymous user the TC calls the operation
IistSubscribedServices at the i-RetailerNamedAccess

274

M S C T e s t - C a s e - B e h a v i o r

M S C T e s t - C a s e - B e h a v i o r

r e v o l v e - r e p l y (l A r e f)

<
(2) r e q u e s t N a m e 1 A c c e s s- r e q u e s t (u s e r l d , pa ss w o r d) 3 e t U s e r D e s c r i p t i o n - r e q u e s t (u s e r l d . .

(1) r e s o l v e - r e q u s t I_JI
g e t U s e r D e s c r i p t i o n - r e s I y (u s e r D e s c r i p t i c

<

--
r e q u e s t N a m e d A c c e6 s- r e p l y (U A r e f 1

C
(3) S e t U s e r C o n t e x t - r e q ue s t (u s s r c c x t)

3
s e t t S e r C o n t e x t - r e p l y

C
(4) I i s t S u b s c r i b e I S e r v i c e s - r e q u e s: I i s t O i A u t h o r i r e d . #

li I t S u b s c r i b e d S e r v c e s - r e p l y (r e r v i c e s) lisitO rile

c I .
n .

l i s t R e q U i r e d S e r v i c e C o m p o n e n t - r e p l y (s s u A P - U R L) g e t L o a d e r l n f o - r e p l y (S S UA P -U F

< . .
(6) s t a r t S e r v i c e - ' e q u e s t (8 e r v i c e)

>
S t a r t s > r v i c e- e x c e p t i o n (Se r v i c e U n a v a i l a b l ,)

<

;e r v i c e s - r e q U e s t

d s e r v i c e s - r e p l y (

I (5) I i s t R e q u i r e d S b r v i c e C o m p o n e n d r e q u e s t (s e r v i c e) l g e t L o a d e r l n f o - r l q u e s t (s e r v i c e)

Fig. 2. Behavior ofthe PTC Emulating Client

interfkce. Then the UA sends the request which implements the
IistWAuthorizedServices to the SC which provides the application.
information with the help of the underlying database
back to the UA. The UA replies the list back to the
TC .
The TC which acts like a Provider Agent in the TINA
architecture needs some information about the service
specific user application of the selected service in
order to start the service. Therefore it calls the
operation IistRequiredServiceComponent. This causes
the UA to send the request getLoaderZnfo to
the SC which retrieves this information fiom the
database. In the current implementation this
information consists of an URL to a JAVA applet

6.

i s e r l d)

I r v i c e s)

.)

service specific user

7. Aier the TC has got the information about the service
specific user application it calls the startservice
operation for the selected service. Since no service is
running on the platform the UA responds with a
ServiceUnavailable exception.

111. PERFORMANCE %STING OF DISTRIBUTED SYSTEMS

Performance testing with a high number of test
components requires a flexible solution for establishing
different configurations, initiation of the tests and the
evaluation of the results. The normal case is that even for a
single test case the test configuration is not fixed, but is

275

modified to in order to determine the maximal capacity of the
system under test. A continuously increasing number of test
components is used to identify the response time of the access
session server under increasing load conditions.

The test components themselves form a distributed
application which has to be managed. The distribution of the
test components is necessary because they run concurrently
and should not influence each other - this cannot be
guaranteed if the amount of test components becomes too
high on a single node.

I 1 !

Fig 3 Generic Distributed Test Architecture

Figure 3 displays the generic configuration for
performance testing of distributed system. Each performance
test is realized by a set of parallel test components realizing
the individual test behaviour such as the emulation of client
behaviour, and by a main test component, which controls and
coordinates the other parallel test components. Every test
component and the test manager, i.e. every test entity, may
reside on a separate tester. No resource sharing except of
sharing of communication links can take place. For example,
the resource time, one of the most important resources can
not be shared between two entities that do not reside on the
same testing device. Time synchronization needs to take
place. The fact that the coordination message exchange may
cross the bound-aries of a single tester requires
internetworking between the single testers. Reliability of the
inter-network is a assumed.

In a distributed test setup two synchronization aspects can
be identified: time and hc t iona l synchronization. In the
following we will describe the hc t iona l synchronization
only’.

0 test execution and
test reporting.

Test setup is required to bring all involved entities, like
communication channels, testing devices, test components,
etc. into a well defined state, so that the test operator is able
to execute the test. Possibly, a set of parameters required for

Functional synchronization is needed to perform:
test setup, maintenance and clearing

proper execution of a test suite have to be distributed to the
testing components. The test execution is controlled via
coordination messages such as ’start test’ and ’report test
results’. After a test suite has been completed, the testing
devices and the communication channels have to release
occupied resources, so that the testing devices are able to
perform another testing session.

The process of gathering results produced by a test or a
test campaign is denoted by the term test reporting. A test
operator can request traces produced by the test components
at the testing devices. This information has to be delivered to
the test operator using the desired granularity. Either all test
devices have to report the traces, or only a specific one. The
test result is considered to be transmitted to the test operator
via the notification of a completed test case.

Fig. 4. Architecture of TSPl

At any stage during the test execution it has to be assured
that all test components are in a known and stable state.

Basic Concepts of the Test Synchronization Protocol TSPl
by ETSI [5] have been used to implement the main and
parallel test components for the performance tests of the
service access session. The Architecture of TSPl is presented
in Figure 3.

The purpose of the TSPl protocol is to achieve hnctional
coordination and time synchronization between two or more
Test Synchronization Architectural Elements (TSAEs).
TSAEs are Front Ends (FE), Test Components (TC) and the
System Supervisor (SS).

A Test Component is executable, i.e. it realizes the logical
test behaviour and contains also hardware dependent parts
like protocol emulations of the underlying layer, access to
Line Interfaces, etc. The Front End is a server process on
each testing device which is involved in the test
configuration. It is responsible for delivery of control
messages between test components and the system
supervisor. One fiont end is the interface for all test
components on a testing device. The System Supervisor takes
care of distributing control messages to the appropriate test
component via the respective Front End. In fact, the complete
test configuration and the distribution of the test components
is only known to the System Supervisor.

Time synchronization is of less complexity for the described
performance tests, since each PTC calculates its execution time locally and
reports it to the main test component. So, the weak requirement of equal time
progress in each test device has to be assumed only.

276

IV. THE CONCRETE PERFORMANCE TEST ARCHITECTURE
AND CONFIGURATION

The concrete performance test architecture for the
performance test of the access session consists of the
following computational objects which interact via well-
defined interfaces (see Figure5):

TestManager - this Eomponent establishes the required
configurations and passes the necessary information (like
the name service IOR);
TCAgent - this component runs on every node where test
components are to be installed, it acts as a daemon to
start the test components on behalf of the Test Manager;
MTC (Main Test Component) - this component manages
the specific test. It allows to set the test parameters,
select the test case to be executed, initiates the test and
collects the results;
PTC (Parallel Test Component) - this component
executes the test itself

Fig. 5. The Test Components

The MTC and PTC have to be implemented for each
specific test whereas the Test Manager and the TCAgent are
generic components which are test independent. The
implementation of a PTC is very easy, just one virtual
method has to be overloaded and implemented with the test
behaviour. All other behaviour is implemented in a base
class.

Thus, the scenario for implementing and executing a test is
the following:
1.

2.
3.

4.

5.

Implementation of the PTC by overloading the
test-execute method of the PTC class.
Implementation of the MTC.
Instantiation of the TCAgent on each node on which
PTCs or the MTC should run.
Instantiation of the Test Manager. The Test Manager has
an integrated editor which allows to specify a script
containing the test configuration, i.e. what test
components are to be started on which node. (Example
line: ,,start 10 ptc.exe on node-2"). This script is then
interpreted by the Test Manager.
The Test Manager contacts the TCAgents to start the test
components. The MTC has to be the first started
component. After being started the MTC registers itself

at the Test Manager. A reference to the MTC is then
being passed to all afterwards installed PTCs.
The PTCs register themselves at the MTC.
The MTC initiates the tests by calling an operation on
each PTC.
The PTCs start the test. That means, the overloaded
procedure containing the test behaviour is executed.
The test results from the different PTCs is transmitted to
the MTC and can be evaluated afterwards.

For the concrete test environment we installed the
executables of all TINA components on a Windows NT 4.0
PC with 256 MB memory and a dual processor board with 2x
Intel Pentium 266 MHz. This PC contains also the database
with the user and service information (subscription). The
MTC and the Test Manager are implemented as Windows
applications as well. They are executed on a Windows NT
1 aptop.

The TCAgent and the specific PTCs (also called test
client) are available for both Windows NT and Solaris
systems. One test client for Windows NT has 416KB size,
one test client has 5,3ME3 size.

The performance tests are ongoing work. First results are
available and are reported in the paper. For the PTCs we use
a pool of 5 Sun Sparc 10,20 and Ultra 1 workstations with at
least 64 ME3 memory. These machines are connected via fast
ethemet with the PC, where the TINA components of the
system under test are running and via ethemet with the laptop
with the Test Manager and the MTC. Figure 5 shows the
concrete test configuration. It should be noted that the
network connectivity between the PTCs and the tested system
is not below 100 MB/s.

6.
7.

8.

9.

100 100

I -
1 L laptop

- Fast Ethernet/Etht-met

- ATM

Fig. 6 . Performance Test Setup

This configuration ensures, that the PTCs are able to
access the TINA system almost simultaneously and that the
performance metering is not influenced by the network
capacity.

Our specific MTC implementation enables that the PTCs
start the test at a specific time. This is done by passing a time
parameter fkom the MTC to all PTCs. The advantage is, that
the establishment of the configuration does not overlap with
the test itself.

An additional feature of our MTC is, that it allows to
specify an interval to start the test components not

277

simultaneously but with a well-defined gap in between each
of the test components.

v. TEST RESULTS AND EVALUATION
Test results have been generated so far for two cases:

(A) local testing only, i.e. both the test system and the
system under test are executed on the same
computer
distributed testing including the PC laptop for the
system under test and the main test components and
up to two SUN workstations for up to 40 PTCs.

In both configurations, a single test (i.e. fi-om
'resolve-request' to the final 'startservice-exception') takes
approximately 1200 ms. In the case, that several test clients
are started simultaneously, the response time is degraded.

The test results of configuration (A) are presented in
Figure 8. In the local test, best results are achieved with
parallel test clients, which are gaped with 1000ms. Then, the
response time is in between 800 and 95Oms. This holds for 5
up to 40 test clients, i.e. the number of clients is not the
restricting size but rather the computational power of the PC
laptop. The smaller the gap between the test clients, the
longer are the response times. In the case of 40 test clients,
the longest response time has been measured.

(B)

""r - -- - - -

am, I-

Fig. 7. Mean Values for Response Times for
Configuration (A)

In the networked case, i.e. configuration (B) in Figure 7,
the measurements show a strong dependence on the number
of clients. These test results are rather independent of the gap
between individual test clients. It has to be analysed whether
the transmission delay of the network supersedes the
differences, which are observed in the local configuration. In
particular, since the test results in Figure 7 have been
obtained within the FOKUS infi-astructure network during
normal working time.

Additional analysis for the case of simultaneous access of
several clients to the access session server has shown, that the
underlying data base of the TINA access session is a
performance bottleneck. Also, the handling of multiple
threads in the access session can be improved. A performance
increase is also expected with a more powerfid PC (in terms
of speed and main memory), on which the access session is
executed.

:::: rlm

0 0

Fig 8. Mean Values for Response Times for
Configuration (B)

VI. CONCLUSION
Performance testing of real applications in realistic test

scenarios and test configurations is of major importance for
the assessment, evaluation and overall acceptance of TINA
technology (and of distributed object technologies in
general).

The presented performance test approach is generic and
can be used to cope with various test objectives. For example,
it can be used to evaluate the maximal performance of a
server device in a networked environment. It is also of use to
evaluate response times of servers and the supported number
of simultaneous clients.

The performance test results can be used to determine
optimal parameter settings for the server such as thread count,
main memory, etc. The performance test results can also be
used as a basis for the decision whether a server device has to
be upgraded or whether a better parameter tuning is sufficient
to come up with better server performance.

It should be noted at this point, that in the future new
features such as on-line performance monitoring and load
balancing in distributed process environments will support
the routing of client requests as well as the migration to less
loaded servers. Also in this scenario, performance testing can
be used to fine-tune the load balancing and migration
algorithms but also to evaluate their efficiency.

REFERENCES

U1

[2]

Fischer J., Fischbeck N., Born M., Hof€inann A., Winkler M.:
Towards a behavioral Description of ODL, TINA'97 conference

M. Heinrich. Ressourcen-orientierte Modellierung ais Basis des
Konfigurierens modularer Technischer Systeme, Beitrag zum 5.
Workshop Planen und Konfigurieren. Daimler Benz AG.
Hamburg, 199 1
M. Heinrich, E. W. Jiingst. A Resource-Based Paradigm for the
Configuring of Technical Systems fiom Modular Components, in
Proceedings Seventh IEEE Conference on Artificial intelligence
Applications, S.257-264. IEEE, 1991
OMG: CORBA Component Model RFP, orbod97-06-12, 1997
ITU-T Rec. X.903 I ISO/IEC 10746-3: 1995, Open Distributed
Processing - Reference Model Part 3

ITU-T Rec. X904 I ISO/IEC 107464: 1995, Open Distributed
Processing - Reference Model Part 4
OMG: The Common Object Request Broker Architecture and
Specification, Version 2.1. Aug. 1997.

[3]

[4]
[5]

[61

[7]

278

